Topic 7 -
Spanning, linear independence, bases

WW 7 TOPIC -
Spanning, Linear Independence, and Bases

We are going to develop a way to create coordinate systems in vector spaces.
This is what a basis will do.

This is the x-axis/ y-axis coordinate system
other coordinate system

Def: Let V be a vector space over a field F.
Let $\vec{V}_{1}, \vec{v}_{2}, \ldots, \vec{V}_{n}$ be in V.
(1) The span of $\vec{V}_{1}, \vec{V}_{2}, \ldots, \vec{V}_{n}$ is defined to be the set

$$
\begin{aligned}
& \operatorname{span}\left(\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{V}_{n}\right\}\right) \\
& =\{\underbrace{c_{1} \vec{v}_{1}+c_{2} \vec{V}_{2}+\ldots+c_{n} \vec{V}_{n}}_{\text {tic is called a }} \mid c_{1}, c_{2}, \ldots, \vec{v}_{n} \in \mathbb{R}\} \\
& \vec{v}_{2}, \ldots, \vec{v}_{n}
\end{aligned}
$$

this is called a linear combination of $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$
(2) If $W=\operatorname{span}\left(\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}\right)$ then we say that $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ span W.

Ex: Let $V=\mathbb{R}^{2}$ and $F=\mathbb{R}$
Let $\vec{v}_{1}=\langle 1,0\rangle \leftrightarrow \vec{v}_{1}$ is in \mathbb{R}^{2}

$$
\left.\begin{array}{rl}
\text { Then, } \\
\operatorname{span}\left(\left\{\overrightarrow{v_{1}}\right\}\right) & =\left\{c_{1} v_{1} \mid c_{1} \in \mathbb{R}\right\} \\
& =\left\{c_{1}\langle 1,0\rangle \mid c_{1} \in \mathbb{R}\right\} \\
& =\left\{\left\langle c_{1}, 0\right\rangle \mid c_{1} \in \mathbb{R}\right\} \\
& =\{\underbrace{\langle 0,0\rangle}_{c_{1}=0}, \underbrace{\langle\langle\mid, 0\rangle\rangle}_{\substack{\langle-3,0\rangle \\
c_{1}=-3}}, \ldots\} \\
c_{1}=1 \\
v=\mathbb{R}^{2}
\end{array}\right\}
$$

$E x:$ Let $V=\mathbb{R}^{2}$ and $F=\mathbb{R}$.
Let $\vec{v}_{1}=\langle 1,0\rangle$ and $\vec{v}_{2}=\langle 0,1\rangle$
Then,

$$
\begin{array}{r}
\text { Then, }\left(\left\{\vec{v}_{1}, \vec{v}_{2}\right\}\right)=\left\{c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2} \mid c_{1}, c_{2} \in \mathbb{R}\right\} \\
\\
=\left\{c_{1}\langle 1,0\rangle+c_{2}\langle 0,1\rangle \mid c_{1}, c_{2} \in \mathbb{R}\right\}
\end{array}
$$

$$
\begin{aligned}
& \text { or example, } \\
& \underbrace{5 \cdot\langle 1,0\rangle-\underbrace{5}_{c_{2}}=-\pi}_{c_{1}=5}=\langle 0,1\rangle=\langle 5,0\rangle+\langle 0,-\pi\rangle \\
& =\langle 5,-\pi\rangle
\end{aligned}
$$

For example,
is in the span of v_{1}, v_{2},

$$
\langle 5,-\pi\rangle=\underbrace{5 \vec{v}_{1}-\pi \vec{v}_{2}}_{\substack{\text { in the span } \\ \text { of } v_{1}, v_{2}}}
$$

Is $\langle 0,0\rangle$ in $\operatorname{span}\left(\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}\right\}\right){\underset{0}{2}}_{P_{0}}$ Yes, because

$$
\langle 0,0\rangle=0 \cdot \underbrace{\langle 1,0\rangle}_{\overrightarrow{V_{1}}}+0 \cdot \underbrace{\langle 0,1\rangle}_{\overrightarrow{v_{2}}}
$$

Is $\left\langle-3, \frac{1}{2}\right\rangle$ in $\operatorname{span}\left(\left\{\vec{v}_{1}, \vec{v}_{2}\right\}\right) \underset{0}{\underset{0}{?}}$ YCS, because

$$
\begin{aligned}
& \text { Yes, because } \\
& \left\langle-3, \frac{1}{2}\right\rangle=-3 \cdot \underbrace{\langle 1,0\rangle}_{\overrightarrow{V_{1}}}+\frac{1}{2} \cdot \underbrace{\langle 0,1\rangle}_{\overrightarrow{V_{2}}}
\end{aligned}
$$

We have

$$
\begin{aligned}
\operatorname{spa} & \left(\left\{\vec{v}_{1}, \vec{v}_{2}\right\}\right) \\
& =\left\{c_{1}\langle 1,0\rangle+c_{2}\langle 0,1\rangle \mid c_{1}, c_{2} \in \mathbb{R}\right\} \\
& =\left\{\left\langle c_{1}, 0\right\rangle+\left\langle 0, c_{2}\right\rangle \mid c_{1}, c_{2} \in \mathbb{R}\right\} \\
& =\left\{\left\langle c_{1}, c_{2}\right\rangle \mid c_{1}, c_{2} \in \mathbb{R}\right\} \\
& =\mathbb{R}^{2}=V
\end{aligned}
$$

So, $\vec{V}_{1}=\langle 1,0\rangle, \vec{v}_{2}=\langle 0,1\rangle$

$$
\text { Span } V=\mathbb{R}^{2}
$$

Ex: Let $V=\mathbb{R}^{2}$ and $F=\mathbb{R}$

$$
\text { Let } \vec{v}_{1}=\langle 2,1\rangle, \vec{v}_{2}=\langle-1,1\rangle \text {. }
$$

Let's list some vectors in $\operatorname{span}\left(\left\{\vec{v}_{1}, \overrightarrow{v_{2}}\right\}\right)$.

$$
\begin{aligned}
& 1 \cdot \vec{v}_{1}+2 \cdot \vec{v}_{2}=\langle 2,1\rangle+2 \cdot\langle-1,1\rangle \\
&=\langle 2,1\rangle+\langle-2,2\rangle \\
&=\langle 0,3\rangle \\
& \text { 个 }\langle 0,3\rangle=1 \cdot \vec{v}_{1}+2 \vec{v}_{2} \\
& 2 \vec{v}_{2}
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{2} \cdot \vec{V}_{1}-\frac{3}{2} \vec{V}_{2} & =\frac{1}{2}\langle 2,1\rangle-\frac{3}{2}\langle-1,1\rangle \\
& =\left\langle 1, \frac{1}{2}\right\rangle+\left\langle\frac{3}{2},-\frac{3}{2}\right\rangle \\
& =\left\langle\frac{5}{2},-\frac{1}{2}\right\rangle
\end{aligned}
$$

So, $\left\langle\frac{S}{2},-\frac{1}{2}\right\rangle$ is in the span of \vec{v}_{1}, \vec{v}_{2}.

Claim: $\operatorname{span}\left(\left\{\vec{v}_{1}, \vec{v}_{2}\right\}\right)=\mathbb{R}^{2}$
proof of claim: Let $\langle x, y\rangle$ be in \mathbb{R}^{2}. We need to show that we can always solve

$$
\langle x, y\rangle=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}
$$

for c_{1}, c_{2}.

Let's solve

$$
\langle x, y\rangle=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}
$$

This becomes

$$
\langle x, y\rangle=c_{1}\langle 2,1\rangle+c_{2}\langle-1,1\rangle
$$

Which becomes

$$
\begin{aligned}
& \text { hich becomes } \\
& \langle x, y\rangle=\left\langle 2 c_{1}, c_{1}\right\rangle+\left\langle-c_{2}, c_{2}\right\rangle
\end{aligned}
$$

which becomes

$$
\left.\left.\begin{array}{c}
\text { mich becomes } \\
\langle\underset{\uparrow}{x, y}\rangle
\end{array}\right\rangle=\begin{array}{c}
2 c_{1}-c_{2}, \\
c_{1}+c_{2}
\end{array}\right\rangle
$$

Which is equivalent to

$$
\begin{aligned}
& x=2 c_{1}-c_{2} \\
& y=c_{1}+c_{2}
\end{aligned} \text { or } \quad \begin{aligned}
& 2 c_{1}-c_{2}=x \\
& c_{1}+c_{2}=y
\end{aligned}
$$

This systen becomes

$$
\begin{aligned}
& \left(\begin{array}{cc|c}
2 & -1 & x \\
1 & 1 & y
\end{array}\right) \xrightarrow{R_{1} \leftrightarrow R_{2}}\left(\begin{array}{cc|c}
1 & 1 & y \\
2 & -1 & x
\end{array}\right) \\
& \xrightarrow{-2 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{cc|c|}
1 & 1 & y \\
0 & -3 & x-2 y
\end{array}\right) \\
& \xrightarrow{-1 / 3 R_{2} \rightarrow R_{2}}\left(\begin{array}{cc|c}
1 & 1 & y \\
0 & 1 & -\frac{1}{3} x+\frac{2}{3} y
\end{array}\right)
\end{aligned}
$$

This gives

$$
\begin{aligned}
c_{1}+c_{2} & =y \\
c_{2} & =-\frac{1}{3} x+\frac{2}{3} y
\end{aligned}
$$

(2)

$$
\rightarrow c_{2}=-\frac{1}{3} x+\frac{2}{3} y
$$

(1)

$$
\begin{aligned}
& \rightarrow c_{1}=y-c_{2} \\
& =y-\left(-\frac{1}{3} x+\frac{2}{3} y\right) \\
& =\frac{1}{3} x+\frac{1}{3} y
\end{aligned}
$$

Thus, given any $\langle x, y\rangle$ in \mathbb{R}^{2} we can write

$$
\langle x, y\rangle=\underbrace{\langle\langle x, y\rangle=\langle 12,-3\rangle}_{c_{1} \vec{V}_{1}+c_{2} \vec{V}_{2}}
$$

For example, if $\langle x, y\rangle=\langle 12,-3\rangle$ then

$$
\begin{aligned}
\text { then } \\
\begin{aligned}
\langle 12,-3\rangle & =\left(\frac{1}{3} \cdot 12+\frac{1}{3}(-3)\right)\langle 2,1\rangle \\
& +\left(-\frac{1}{3} \cdot 12+\frac{2}{3}(-3)\right)\langle(-1,1\rangle \\
& =3\langle 2,1\rangle-6\langle-1,1\rangle
\end{aligned}
\end{aligned}
$$

We showed any vector $\langle x, y\rangle$ in \mathbb{R}^{2} is in the span of $\vec{v}_{1}=\langle 2,1\rangle, \vec{v}_{2}=\langle-1,1\rangle$. Thus, $\vec{v}_{1}=\langle 2,1\rangle, \vec{v}_{2}=\langle-1,1\rangle$ span \mathbb{R}^{2} or you can write $\operatorname{span}\left(\left\{\vec{v}_{1}, \vec{V}_{2}\right\}\right)=\mathbb{R}^{2}$.

Theorem: Let V be a vector space over a field F.
Space over a field
Let $\vec{V}_{1}, \vec{V}_{2}, \ldots, \vec{V}_{n}$ be in V.
Then $\operatorname{span}\left(\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}\right)$
So we create subspaces of V by is a subspa
$\begin{aligned} & \text { picture when } \\ & n=3\end{aligned}$ picking some vectors and creating their span

Def: Let V be a vector space over a field F.
Let $\vec{V}_{1}, \vec{V}_{2}, \ldots, \vec{V}_{n}$ be in V.
We say that $\vec{V}_{1}, \vec{V}_{2}, \ldots, \vec{V}_{n}$ are linearly dependent if there exist scalars $c_{1}, c_{2}, \ldots, c_{n}$ from F that are not all equal to zero (but some can be zero)

$$
\begin{gathered}
\text { ch that } \\
c_{1} \vec{v}_{1}+c_{2} v_{2}+\ldots+c_{n} \vec{v}_{n}=\overrightarrow{0} \\
\rightarrow
\end{gathered}
$$

If $\vec{V}_{1}, \vec{V}_{2}, \ldots, \vec{V}_{n}$ are not linearly dependent, then we say that they are linearly independent.

Ex: Let $V=\mathbb{R}^{3}, F=\mathbb{R}$.
Let $\vec{V}_{1}=\langle 1,1,2\rangle$ and $\vec{V}_{2}=\langle-2,-2,-4\rangle$
Note that $\vec{V}_{2}=-2 \vec{V}_{1}$
So, $2 \cdot \vec{v}_{1}+1 \cdot \vec{v}_{2}=\overrightarrow{0}$
Thus, $c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}=\overrightarrow{0}$ has the
Solution $c_{1}=2, c_{2}=1$ and
c_{1}, c_{2} are not both equal to zero.
Thus, $\vec{v}_{1}=\langle 1,1,2\rangle, \vec{v}_{2}=\langle-2,-2,-4\rangle$ are linearly dependent.
$E x:$ Let $V=\mathbb{R}^{3}$ and $F=\mathbb{R}$.
Let $\vec{v}_{1}=\langle 1,1,1\rangle, \vec{v}_{2}=\langle 1,0,1\rangle$,

$$
\vec{v}_{3}=\left\langle 1, \frac{4}{3}, 1\right\rangle
$$

Are these vectors linearly dependent or linearly independent?
Consider the equation

$$
\begin{aligned}
& \text { cider the equation } \\
& c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}=\overrightarrow{0}
\end{aligned}
$$

This becomes

$$
\begin{aligned}
& \text { This becomes } \\
& c_{1}\langle 1,1,1\rangle+c_{2}\langle 1,0,1\rangle+c_{3}\left\langle 1, \frac{4}{3}, 1\right\rangle=\langle 0,0,0\rangle
\end{aligned}
$$

This becomes This becomes

$$
\begin{aligned}
& \text { This becomes } \\
& \left\langle c_{1}+c_{2}+c_{3}, c_{1}+\frac{4}{3} c_{3}, c_{1}+c_{2}+c_{3}\right\rangle=\langle 0,0,0\rangle
\end{aligned}
$$

We had

$$
\begin{gathered}
\left\langle c_{1}+c_{2}+c_{3}, c_{1}+\frac{4}{3} c_{3}, c_{1}+c_{2}+c_{3}\right\rangle=\langle 0,0,0\rangle \\
\uparrow
\end{gathered}
$$

This gives

$$
\begin{aligned}
& c_{1}+c_{2}+c_{3}=0 \\
& c_{1}+\frac{4}{3} c_{3}=0 \\
& c_{1}+c_{2}+c_{3}=0
\end{aligned}
$$

Let's solve this system:

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
1 & 1 & 1 & 0 \\
1 & 0 & 4 / 3 & 0 \\
1 & 1 & 1 & 0
\end{array}\right) \xrightarrow[-R_{1}+R_{3} \rightarrow R_{3}]{-R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & 1 & 1 & 0 \\
0 & -1 & 1 / 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \xrightarrow{-R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & 1 & 1 & 0 \\
0 & 1 & -1 / 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

This becomes

$$
\begin{array}{r}
c_{1}+c_{2}+c_{3}=0 \\
c_{2}-\frac{1}{3} c_{3}=0 \\
0=0
\end{array}
$$

(1) c_{1}, c_{2} are leading
(2) voniables.
(3) c_{3} is free variable

$$
\begin{align*}
& c_{1}=-c_{2}-c_{3} \tag{1}\\
& c_{2}=1 / 3 c_{3} \tag{2}\\
& 0=0
\end{align*}
$$

Set $c_{3}=t$.
(2) gives $c_{2}=\frac{1}{3} t$
(1) gives $c_{1}=-c_{2}-c_{3}=-\left(\frac{1}{3} t\right)-t=-\frac{4}{3} t$

Solutions are:

$$
\begin{aligned}
& c_{1}=-\frac{4}{3} t \\
& c_{2}=\frac{1}{3} t \\
& c_{3}=t
\end{aligned}
$$

where t can be any real number

Thus the solutions to

$$
c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}=\overrightarrow{0}
$$

are $c_{1}=-\frac{4}{3} t, c_{2}=\frac{1}{3} t, c_{3}=t$ where t is any real number.
Thus, for any real number t we have that

$$
\begin{aligned}
& \text { Thus, for any real number n } \underbrace{\left(-\frac{4}{3} t\right)}_{c_{1}} \underbrace{\langle 1,1,1\rangle}_{\vec{v}_{1}}+\underbrace{\left(\frac{1}{3} t\right)}_{c_{2}} \underbrace{\langle 1,0,1\rangle}_{\vec{v}_{2}}+\underbrace{t}_{c_{3}} \underbrace{\left\langle 1, \frac{4}{3}, 1\right\rangle}_{v_{3}} \\
& =\overrightarrow{0}
\end{aligned}
$$

For example if $t=1$, then

$$
\begin{aligned}
& \text { For example if } t=1 \text {, then } \\
& -\frac{4}{3}\langle 1,1,1\rangle+\frac{1}{3}\langle 1,0,1\rangle+1 \cdot\left\langle 1, \frac{4}{3}, 1\right\rangle=\overrightarrow{0}
\end{aligned}
$$

$$
\begin{aligned}
& \text { So, } \\
& \frac{-\frac{4}{3} \vec{v}_{1}+\frac{1}{3} \vec{v}_{2}+1 \cdot \vec{v}_{3}=\overrightarrow{0}}{\rightarrow \rightarrow \rightarrow} \text { linearly }
\end{aligned}
$$

So,

Thus, $\vec{V}_{1}, \vec{V}_{2}, \vec{V}_{3}$ are linearly dependent.

Ex: Let $V=\mathbb{R}^{2}$ and $F=\mathbb{R}$.
Let $\vec{V}_{1}=\langle 1,0\rangle$ and $\vec{V}_{2}=\langle 0,1\rangle$.
Are \vec{v}_{1}, \vec{v}_{2} linearly independent or linearly depend dent?
Consider the equation

$$
c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}=\vec{O}
$$

This becomes

$$
\begin{aligned}
& \text { is becomes } \\
& c_{1}\langle 1,0\rangle+c_{2}\langle 0,1\rangle=\langle 0,0\rangle
\end{aligned}
$$

This gives

$$
\text { is gives }\left\langle c_{1}, 0\right\rangle+\left\langle 0, c_{2}\right\rangle=\langle 0,0\rangle
$$

This gives

$$
\begin{aligned}
& \text { gives } \sqrt{1}\left\langle\begin{array}{l}
0,0 \\
c_{1}, \\
c_{2}
\end{array}\right\rangle=\langle
\end{aligned}
$$

Thus, $c_{1}=0, c_{2}=0$.

Thus, the only solution to

$$
\underbrace{c_{1}\langle 1,0\rangle+c_{2}\langle 0,1\rangle=\langle 0,0\rangle}_{c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}=\overrightarrow{0}}
$$

is $c_{1}=c_{2}=0$.
Thus, $\vec{V}_{1}=\langle 1,0\rangle, \vec{v}_{2}=\langle 0,1\rangle$ are linearly independent.

Ex: Let

$$
\begin{aligned}
& E x: \text { Let } \\
& V=P_{2}=\left\{a+b x+c x^{2} \mid a, b, c \in \mathbb{R}\right\}
\end{aligned}
$$

$$
F=\mathbb{R}
$$

Let

$$
\begin{aligned}
& \vec{V}_{1}=1 \\
& \vec{V}_{2}=1+x \\
& \vec{V}_{3}=1+x+x^{2}
\end{aligned}
$$

Are $\vec{v}_{1}, \vec{V}_{2}, \vec{v}_{3}$ linearly indepen dent or linearly dependent $?_{0}$

Consider the equation

$$
\begin{aligned}
& \text { insider the equation } \\
& c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\vec{c}_{3} \vec{v}_{3}=0
\end{aligned}
$$

If there is only one solution $c_{1}=c_{2}=c_{3}=0$ then $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ are linearly independent.
If there are more solutions they are linearly dependent.

$$
\begin{aligned}
& \text { This equation becomes } \\
& c_{1}(1)+c_{2}(1+x)+c_{3}\left(1+x+x^{2}\right)=\underbrace{0+0 x+0 x^{2}}_{\uparrow} \\
& 1+0 x+0 x^{2} 1+x+0 x^{2}
\end{aligned}
$$

This becomes

$$
\begin{aligned}
& \text { his becomes } \\
& c_{1}+c_{2}+c_{2} x+c_{3}+c_{3} x+c_{3} x^{2}=0+0 x+0 x^{2}
\end{aligned}
$$

This gives

$$
\underbrace{\left(c_{1}+c_{2}+c_{3}\right)}+\underbrace{\left(c_{2}+c_{3}\right)} x+\underbrace{c_{3} x^{2}=0+0 x+0 x^{2}}
$$

This gives

$$
\begin{align*}
c_{1}+c_{2}+c_{3} & =0 \tag{1}\\
c_{2}+c_{3} & =0 \\
c_{3} & =0
\end{align*}
$$

This is already reduced.
Solution is:
(3) gives $\mathrm{c}_{3}=0$
(2) gives $c_{2}=-c_{3}=0$
(1) gives

$$
\begin{gathered}
c_{1}=-c_{2}-c_{3} \\
=0+0=0
\end{gathered}
$$

Since the only solution to

$$
c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}=\overrightarrow{0}
$$

is $c_{1}=c_{2}=c_{3}=0$,
this means that

$$
\begin{aligned}
& \vec{V}_{1}=1 \\
& \vec{V}_{2}=1+x \\
& \vec{V}_{3}=1+x+x^{2}
\end{aligned}
$$

are linearly in dependent.

We will now create the idea of a coordinate system in a vector space Its called a basis.

Def: Let V be a vector space over a field F.
Let $\vec{V}_{1}, \vec{V}_{2}, \ldots, \vec{V}_{n}$ be in V.
We say that $\vec{V}_{1}, \vec{v}_{2}, \ldots, \vec{V}_{n}$ are a basis for V if
(1) $\vec{V}_{1}, \vec{V}_{2}, \ldots, \vec{V}_{n} \operatorname{span} V$ and
(2) $\vec{V}_{1}, \vec{V}_{2}, \ldots, \vec{V}_{n}$ are linearly independent

Idea: (1) makes it so that every vector \vec{V} in $V \underset{\rightarrow}{\text { can be written }} \underset{\rightarrow}{\text { in }}$ the form $\vec{V}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{n} \vec{V}_{n}$
(2) makes it so that there is only one way to write $\vec{v}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{n} \vec{v}_{n}$ ie the constants are unique to \vec{V}

Ex: Let $V=\mathbb{R}^{2}, F=\mathbb{R}$.
Let $\vec{V}_{1}=\langle 1,0\rangle, \vec{V}_{2}=\langle 0,1\rangle$.
In class we showed \vec{V}_{1}, \vec{V}_{2} span \mathbb{R}^{2}. Let's do this again.
Given $\langle x, y\rangle$ in $V=\mathbb{R}^{2}$ we can write

$$
\underbrace{\langle x, y\rangle=x\langle 1,0\rangle+y\langle 0,1\rangle}_{|x, y\rangle \text { is in the span }}
$$

So, $\langle x, y\rangle$ is in the span of $\vec{v}_{1}=\langle 1,0\rangle, \vec{v}_{2}=\langle 0,1\rangle$.
We just showed that \vec{v}_{1}, \vec{V}_{2} are linearly independent.
Thus, $\vec{V}_{1}=\langle 1,0\rangle, \vec{v}_{2}=\langle 0,1\rangle$ is a basis for $V=\mathbb{R}^{2}$. This is called the standard basis.
$E x:$ Let $V=\mathbb{R}^{2}$ and $F=\mathbb{R}$. Let $\vec{V}_{1}=\langle 2,1\rangle$ and $\vec{V}_{2}=\langle-1,1\rangle$

Earlier, we showed \vec{V}_{1}, \vec{V}_{2} span \mathbb{R}^{2}, in particular we showed that if $\langle x, y\rangle$ is in \mathbb{R}^{2} then

$$
\begin{aligned}
& \text { that if }\langle x, y\rangle \text { is in } \mathbb{R} \\
& \langle x, y\rangle=\underbrace{\left(\frac{1}{3} x+\frac{1}{3} y\right) \vec{V}_{1}+\left(-\frac{1}{3} x+\frac{2}{3} y\right) \overrightarrow{V_{2}}}_{c_{1} \overrightarrow{V_{1}}+c_{2} \vec{V}_{2}} \\
& \text { that } \vec{V}_{1}, \vec{V}_{2} \text { we }
\end{aligned}
$$

Now we will show that \vec{V}_{1}, \vec{V}_{2} are a basis for \mathbb{R}^{2}. We just need to show that \vec{V}_{1}, \vec{V}_{2} are linearly independent.

Suppose we have

$$
\begin{aligned}
& \text { pose we have } \\
& c_{1} \vec{v}_{1}+\vec{c}_{2} \vec{v}_{2}=\overrightarrow{0}
\end{aligned}
$$

What are the solutions in terms of c_{1}, c_{2} ?

$$
\begin{aligned}
& \text { We have } \\
& c_{1} \underbrace{\langle 2,1\rangle}_{\vec{v}_{1}}+c_{2} \underbrace{\langle-1,1\rangle}_{\vec{v}_{2}}=\underbrace{\langle 0,0\rangle}_{\overrightarrow{0}}
\end{aligned}
$$ We have

This becomes

$$
\begin{aligned}
& \text { This becomes } \\
& \left\langle 2 c_{1}, c_{1}\right\rangle+\left\langle-c_{2}, c_{2}\right\rangle=\langle 0,0\rangle
\end{aligned}
$$

which becomes
We can always write $0 \vec{v}_{1}+0 \vec{v}_{2}=\overrightarrow{0}$ If that the only sol. \vec{v}_{2} then v_{1}, v_{2} we lin. ind. If there are more
ways to express $\overrightarrow{0}$ in terms of \vec{v}_{1}, \vec{v}_{2} then \vec{v}_{1}, \vec{v}_{2} are lin. dep.

So we get

$$
\begin{aligned}
2 c_{1}-c_{2} & =0 \\
c_{1}+c_{2} & =0
\end{aligned}
$$

This gives

$$
\begin{align*}
& \left(\begin{array}{cc|c}
2 & -1 & 0 \\
1 & 1 & 0
\end{array}\right) \xrightarrow{R_{1} \leftrightarrow R_{2}}\left(\begin{array}{cc|c}
1 & 1 & 0 \\
2 & -1 & 0
\end{array}\right) \\
& \xrightarrow{-2 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{cc|c}
1 & 1 & 0 \\
0 & -3 & 0
\end{array}\right) \\
& \xrightarrow{-\frac{1}{3} R_{2} \rightarrow R_{2}}\left(\begin{array}{ll|l}
1 & 1 & 0 \\
0 & 1 & 0
\end{array}\right) \tag{1}
\end{align*}
$$

This gives $c_{1}+c_{2}=0$ $c_{2}=0$
(2) gives $c_{2}=0$.
(1) gives $c_{1}=-c_{2}=-0=0$.

Thus, the only sol. to $c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}=\overrightarrow{0}$ is $c_{1}=c_{2}=0$. So, $\vec{v}_{1}=\langle 2,1\rangle, \vec{v}_{2}=\langle-1,1\rangle$ are linearly independent and thus firm a basis for \mathbb{R}^{2}.

Theorem: Let V be a vector
space over a field F.
Suppose $\vec{V}_{1}, \vec{V}_{2}, \ldots, \vec{V}_{n}$ is a basis for V. Then any other basis will also have n elements in it. Translation: Any two bases for V have the same number of elements in the basis.
Ex: Let $V=\mathbb{R}^{2}, F=\mathbb{R}$
We found two bases for \mathbb{R}^{2} so far:
basis \#1: $\langle 1,0\rangle,\langle 0,1\rangle+\begin{aligned} & \text { standard } \\ & \text { basis } \\ & \text { for } \mathbb{R}^{2}\end{aligned}$
basis \#2: $\langle 2,1\rangle,\langle-1,1\rangle$
What the theorem above says is that since we've found a basis for \mathbb{R}^{2} with $n=2$ vectors in it, every basis for \mathbb{R}^{2} will have 2 vectors in it.

Def: Let V be a vector space over a field F.

If there exists a basis $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ for V with n vectors, then we say that V is finite-dimensional and the dimension of V is n. We write $\operatorname{dim}(V)=n .$| $\begin{array}{l}\text { some } \\ \text { people } \\ \text { wite } \\ \operatorname{dim}_{F}(V)=n\end{array}$ |
| :--- |

Ex: Let $V=\mathbb{R}^{2}$ and $F=\mathbb{R}$ A basis for \mathbb{R}^{2} is $\langle 1,0\rangle,\langle 0,1\rangle$. There are 2 vectors in the basis, so \mathbb{R}^{2} is finite-dimensional and $\operatorname{dim}\left(\mathbb{R}^{2}\right)=2$

Ex: Let

$$
\begin{aligned}
& V=P_{2}=\left\{a+b x+c x^{2} \mid a, b, c \in \mathbb{R}\right\} \\
& F=\mathbb{R}
\end{aligned}
$$

Let $\vec{v}_{1}=1, \vec{v}_{2}=x, \vec{v}_{3}=x^{2}$
Claim: $\vec{V}_{1}=1, \vec{V}_{2}=x, \vec{V}_{3}=x^{2}$ is a basis for P_{2}
(1) We first show that $\vec{V}_{1}, \vec{v}_{2}, \vec{V}_{3}$ span P_{2}.
proof:

Let $a+b x+c x^{2}$ be in P_{2}.
Then, $a+b x+c x^{2}=a \cdot 1+b \cdot x+c \cdot x^{2}$

$$
\begin{aligned}
& =a \cdot 1+b \cdot \vec{v}_{2}+c \cdot \vec{v}_{3} \\
& =a \cdot v_{1}+b \cdot
\end{aligned}
$$

So, $P_{2}=\operatorname{span}\left(\left\{1, x, x^{2}\right\}\right)$
(2) Now we show that
$\vec{V}_{1}=1, \vec{V}_{2}=x, \vec{V}_{3}=x^{2}$ are linearly independent.
Consider the equation

$$
c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}=\overrightarrow{0}
$$

How many solutions does the above equation have?
The above equation becomes \vec{O} in P_{2}

$$
\begin{aligned}
& \text { he above equation becomes } \\
& c_{1} \cdot 1+c_{2} \cdot x+c_{3} x^{2}=0 \cdot 1+0 \cdot x+0 \cdot x^{2} \\
& \uparrow
\end{aligned}
$$

So, $c_{1}=0, c_{2}=0, c_{3}=0$.
Since $c_{1}=c_{2}=c_{3}=0$ is the only solution to $c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}=\overrightarrow{0}$ we know $\vec{V}_{1}, \vec{V}_{2}, \vec{V}_{3}$ are linearly independent

We have shown that

$$
\vec{V}_{1}=1, \vec{V}_{2}=x, \vec{V}_{3}=x^{2}
$$

is a basis for P_{2}.
Thus, P_{2} is finite-dimensional and $\operatorname{dim}\left(P_{2}\right)=3$

Special example:
The "trivial" vector space is the vector space $V=\{\overrightarrow{0}\}$ over a field F. So, V just has one vector.
There is no basis for this vector space.
We just define this special vector space to have dimension 0 .

Ex: Let $V=\mathbb{R}^{n}$ and $F=\mathbb{R}$.
The standard basis for \mathbb{R}^{n}
is the set of vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ where \vec{V}_{i} has a 1 in spot i and O^{\prime} 's everywhere else.
One can show that this is a basis for \mathbb{R}^{n} and thus

$$
\operatorname{dim}\left(\mathbb{R}^{n}\right)=n
$$

n standard basis for \mathbb{R}^{n}

2	$\vec{v}_{1}=\langle 1,0\rangle, \vec{v}_{2}=\langle 0,1\rangle$
3	$\vec{v}_{1}=\langle 1,0,0\rangle, \vec{v}_{2}=\langle 0,1,0\rangle, \vec{v}_{3}=\langle 0,0,1\rangle$
4	$\vec{v}_{1}=\langle 1,0,0,0\rangle, \vec{v}_{2}=\langle 0,1,0,0\rangle$
	$\vec{v}_{3}=\langle 0,0,1,0\rangle, \vec{v}_{4}=\langle 0,0,0,1\rangle$
0	\vdots
0	\vdots
0	\vdots

Ex: Let n be an integer with $n \geqslant 0$.
Then

$$
\begin{aligned}
& \text { Then } \\
& P_{n}=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} \mid a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{R}\right\}
\end{aligned}
$$

The standard basis for P_{n} is

$$
\begin{aligned}
& \vec{V}_{0}=1 \\
& \vec{V}_{1}=x \\
& \vec{V}_{2}=x^{2} \\
& \vdots \\
& \vec{V}_{n}=x^{n}
\end{aligned}
$$

You can show that $\vec{v}_{0}, \vec{v}_{1}, \ldots, \vec{V}_{n}$ one a basis for P_{n} [we did that last time for $n=2]$.
Thus, $\operatorname{dim}\left(P_{n}\right)=n+1$

n	Standend basis for P_{n}
0	1
1	$1, x$
2	$1, x, x^{2}$
3	$1, x, x^{2}, x^{3}$
4	$1, x, x^{2}, x^{3}, x^{4}$
\vdots	\vdots
	\vdots
n	$1, x, x^{2}, \ldots, x^{n}$

Theorem: Let V be a finitedimensional vector space over a field F with $\operatorname{dim}(V)=n$.
So, this means V has a basis with n vectors in it.
Let $\vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{m}$ be in V.
(1) If $m<n$, then $\vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{m}$ do not span V.
(2) If $m>n$, then $\vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{\omega}_{m}$ are linearly dependent.

Ex: Let $V=\mathbb{R}^{3}, F=\mathbb{R}$.
We know the standard basis for \mathbb{R}^{3} is $\langle 1,0,0\rangle,\langle 0,1,0\rangle,\langle 0,0,1\rangle$.
So, $\operatorname{dim}\left(\mathbb{R}^{3}\right)=3.4 \quad \begin{aligned} & n=3 \text { in theorem } \\ & \text { on } p g\end{aligned}$
Let $\vec{w}_{1}=\langle 1,1,1\rangle, \vec{w}_{2}=\left\langle\pi, \frac{1}{2}, 3\right\rangle$.
We have 2 vectors in a 3-dimensional space. Since $2<3$, by
the previous theorem, $\vec{w}_{1}, \vec{\omega}_{2}$ do not span \mathbb{R}^{3}.
Also, they aren't a basis since any basis for \mathbb{R}^{3} must have 3 vectors in it.

Ex: Let $V=P_{3}, F=\mathbb{R}$.
The standard basis for P_{3} is $1, x, x^{2}, x^{3}$. Thus, $\operatorname{dim}\left(P_{3}\right)=4$.

Let

$$
\begin{aligned}
& \vec{w}_{1}=1+3 x^{2} \\
& \vec{w}_{2}=2 x-5 x^{3} \\
& \vec{w}_{3}=5 \\
& \vec{w}_{4}=x^{3} \\
& \vec{W}_{5}=x^{2}-x^{3} \\
& \vec{W}_{6}=1+x+x^{2}+x^{3}
\end{aligned}
$$

We have 6 vectors in a 4 -dimensional vector space, thus the previous theorem says that $\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}, \vec{w}_{4}, \vec{w}_{5}, \vec{w}_{6}$ are linearly dependent.
$\left[\right.$ Also, they are not a basis for P_{3}. $]$

Theorem: Let V be a finitedimensional vector space over a field F.
Suppose $\operatorname{dim}(V)=n$.
Suppose we pick n vectors $\vec{W}_{1}, \vec{W}_{2}, 000, \vec{W}_{n}$ from V.
(1) If $\vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{n}$ are linearly independent, then $\vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{n}$ span V and hence they form a basis for V.
(2) If $\vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{n}$ span V, then $\vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{n}$ are linearly independent and hence they form a basis for V.

Ex: Let $V=P_{2}$ and $F=\mathbb{R}$.
we know that $\operatorname{dim}\left(P_{2}\right)=3$.
Let

$$
\begin{aligned}
& \vec{v}_{1}=1 \\
& \vec{v}_{2}=1+x \\
& \vec{v}_{3}=1+x+x^{2}
\end{aligned}
$$

We saw earlier that $1,1+x, 1+x+x^{2}$ are lineculy independent.
Since we have 3 linearly independent vectors in a 3 -dimensional space $V=P_{2}$, from the previous theorem we know that

$$
1,1+x, 1+x+x^{2}
$$

form a basis for $V=P_{2}$.

Here is the point of having a basis. It gives a coordinate system for V.

Theorem: Let V be a vector space over a field F. Let $\vec{V}_{1}, \vec{V}_{2}, \ldots, \vec{V}_{n}$ be a basis for V.
Then given any vector \vec{x} in V there exist unique scalars $c_{1}, c_{2}, \ldots, c_{n}$ from F where

$$
\begin{aligned}
& c_{1}, c_{2}, \ldots, c_{n} \text { tron } \\
& \vec{x}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+\vec{c}_{n}
\end{aligned}
$$

Ex: Let $V=\mathbb{R}^{2}, F=\mathbb{R}$.
We showed that

$$
\begin{aligned}
& \text { We showed that } \\
& \vec{V}_{1}=\langle 2,1\rangle, \vec{V}_{2}=\langle-1,1\rangle \\
& \mathbb{R}^{2} .
\end{aligned}
$$

is a basis for \mathbb{R}^{2}.
Pick $\vec{x}=\langle 5,8\rangle$.
Because \vec{v}_{1}, \vec{v}_{2} span $V=\mathbb{R}^{2}$ we know we can solve

$$
\vec{x}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}
$$

By the previous theorem, there will be unique c_{1}, c_{2} that solve the above.
Let's solve it. We have

$$
\binom{5}{8}=c_{1}\binom{2}{1}+c_{2}\binom{-1}{1}
$$

This becomes

$$
\binom{5}{8}=\binom{2 c_{1}-c_{2}}{c_{1}+c_{2}}
$$

$$
\begin{aligned}
& \text { This gives } \\
& \qquad \begin{array}{c}
2 c_{1}-c_{2}=5 \\
c_{1}+c_{2}=8
\end{array} \\
& \left(\begin{array}{cc|c}
2 & -1 & 5 \\
1 & 1 & 8
\end{array}\right) \xrightarrow{R_{1} \leftrightarrow R_{2}}\left(\begin{array}{cc|c}
1 & 1 & 8 \\
2 & -1 & 5
\end{array}\right) \\
& \xrightarrow{-2 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{cc|c}
1 & 1 & 8 \\
0 & -3 & -11
\end{array}\right) \xrightarrow{-\frac{1}{3} R_{2}+R_{2}}\left(\begin{array}{cc|c}
1 & 1 & 8 \\
0 & 1 & \frac{11}{3}
\end{array}\right) \\
& \text { gives } c_{2}=\frac{11}{3}
\end{aligned}
$$

This gives

$$
\begin{align*}
c_{1}+c_{2} & =8 \tag{110}\\
c_{2} & =\frac{11}{3} \tag{2}
\end{align*}
$$

(2)
(2) gives $c_{2}=\frac{11}{3}$
(1)

$$
\begin{aligned}
c_{1} & =8-c_{2} \\
& =8-\frac{11}{3} \\
& =\frac{24-11}{3} \\
& =13 / 3
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \binom{5}{8}=\frac{13}{3} \cdot\binom{2}{1}+\frac{11}{3} \cdot\binom{-1}{1} \\
& \binom{5}{8}=\frac{13}{3} \cdot \vec{V}_{1}+\frac{11}{3} \cdot \vec{V}_{2}
\end{aligned}
$$

these numbers

$$
13 / 3,11 / 3
$$

will be called the coordinates of $\vec{x}=\binom{5}{8}$ in terms of the

$$
\begin{aligned}
& \text { basis } \\
& \vec{v}_{1}=\binom{2}{1}, \vec{v}_{2}=\binom{-1}{1} .
\end{aligned}
$$

Def: Let V be a vector space over a field F.
Let $\vec{V}_{1}, \vec{V}_{2}, \ldots, \vec{V}_{n}$ be a basis for V. If we fix this ordering on the basis, then we call this an ordered basis for V. We
write $\beta=\left[\vec{V}_{1}, \vec{V}_{2}, \ldots, \vec{V}_{n}\right]$
to denote an ordered basis.
So the ordering matters here.
β is the name we gave to the basis.
Given \vec{x} in V we can write

$$
\begin{aligned}
& \vec{x} \text { in } V \text { we can } \vec{v}_{n} \\
& \vec{x}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{n}
\end{aligned}
$$

where $c_{1}, c_{2}, \ldots, c_{n}$ are unique elements of F.

The constants $c_{1}, c_{2}, \ldots, c_{n}$ are called the coordinates of \vec{x}
with respect to the ordered basis β and we write

$$
\begin{aligned}
& \text { and we write } \\
& {[\vec{x}]_{\beta}=\left\langle c_{1}, c_{2}, \ldots, c_{n}\right\rangle}
\end{aligned}
$$

or

$$
[\vec{x}]_{\beta}=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)
$$

Ex: Let $V=\mathbb{R}^{2}$ and $F=\mathbb{R}$. We know $\langle 1,0\rangle,\langle 0,1\rangle$ is a basis for \mathbb{R}^{2} and $\langle 2,1\rangle,\langle-1,1\rangle$ is also a basis for \mathbb{R}^{2}.
Let $\beta=[\langle 1,0\rangle,\langle 0,1\rangle] \leftarrow$

$$
\begin{aligned}
& \text { and } \gamma=[\langle 0,1\rangle,\langle 1,0\rangle] \leftarrow \\
& \text { and } \beta^{\prime}=\left[\begin{array}{l}
\text { deferent }
\end{array}\right.
\end{aligned}
$$

This gives us three different ordered bases for \mathbb{R}^{2}.
Let's look at $\vec{x}=\langle 5,8\rangle$.

We have

$$
\begin{aligned}
& \vec{x}=\langle 5,8\rangle= \\
& \text { Thus, } \\
& |l| l
\end{aligned}
$$

$$
\begin{aligned}
& \text { Thus, } \\
& \begin{array}{c}
{[\vec{x}]_{\beta}=\langle 5,8\rangle} \\
\beta=[\langle 1,0\rangle,\langle 0,1\rangle]
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { We also have } \\
& \vec{x}=\langle 5,8\rangle=8 \cdot\langle 0,1\rangle+5 \cdot\langle 1,0\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \text { Thus, } \\
& {[\vec{x}]_{\beta^{\prime}} }=\langle\stackrel{\downarrow}{\uparrow}\langle\stackrel{\downarrow}{2}\rangle \\
& \beta^{\prime}=[\langle 0, \mid\rangle,\langle 1,0\rangle]
\end{aligned}
$$

Thus,

Also, from last week we saw

$$
\vec{x}=\langle 5,8\rangle=\frac{13}{3} \cdot\langle 2,1\rangle+\frac{11}{3} \cdot\langle-1,1\rangle
$$

Thus,

$$
\begin{aligned}
& {[\vec{x}]_{\gamma}=\left\langle\frac{13}{3}, \frac{11}{3}\right\rangle} \\
& \gamma=[\langle 2,1\rangle,\langle-1,1\rangle]
\end{aligned}
$$

Ex: Let

$$
V=P_{2}=\left\{a+b x+c x^{2} \mid a, b, c \in \mathbb{R}\right\}
$$

and $F=\mathbb{R}$.
Standard basis for P_{2} is $1, x, x^{2}$.
In HW 7-Part 1 problem $8(a)$ you show that $1,1+x, 1+x+x^{2}$ is also a basis for P_{2}
Let $\beta=\left[1, x, x^{2}\right]$ and

$$
\begin{aligned}
& \beta=[1, x, x] \\
& \gamma=\left[1,1+x, 1+x+x^{2}\right] .
\end{aligned}
$$

Let $\vec{v}=4+2 x+3 x^{2}$.
Let's find $[\vec{v}]_{\beta}$ and $[\vec{v}]_{\gamma}$.

We have that

$$
\begin{aligned}
& \text { We have that } \\
& \vec{v}=4+2 x+3 x^{2}=4 \cdot 1+2 \cdot x+3 \cdot x^{2} \\
& \qquad \beta=\left[1, x, x^{2}\right]
\end{aligned}
$$

$$
[\vec{v}]_{\beta}=\langle 4,2,3\rangle
$$

Thus,

Let's now find $[\vec{V}]_{\gamma}$.
we need to solve

$$
\begin{aligned}
& \text { We need to solve } \\
& \underbrace{4+2 x+3 x^{2}}_{\vec{v}}=\underbrace{c_{1}(1)+c_{2}(1+x)+c_{3}\left(1+x+x^{2}\right)}_{\gamma=\left[1,1+x, 1+x+x^{2}\right]} \\
& \text { This becomes } \\
& 4+2 x+3 x^{2}=\underbrace{\left(c_{1}+c_{2}+c_{3}\right)}_{T}+\underbrace{\left(c_{2}+c_{3}\right)}_{T} x+c_{3} x^{2}
\end{aligned}
$$

This gives

$$
\begin{aligned}
c_{1}+c_{2}+c_{3} & =4 \\
c_{2}+c_{3} & =2 \\
c_{3} & =3
\end{aligned}
$$

This is
(2) 5 already reduced
(3) gives $c_{3}=3$.
(2) gives $c_{2}=2-c_{3}=2-3=-1$
(1) gives $c_{1}=4-c_{2}-c_{3}=4-(-1)-3=2$

$$
\underbrace{\begin{array}{l}
\text { Thus, } \\
4+2 x+3 x^{2}
\end{array}=2 \cdot(1)-1 \cdot(1+x)+3 \cdot\left(1+x+x^{2}\right)}_{\vec{v}}
$$

So,

$$
[\stackrel{\rightharpoonup}{v}]_{\gamma}=\langle 2,-1,3\rangle
$$

Keeping $\gamma=\left[1,1+x, 1+x+x^{2}\right]$, if you know that

$$
\begin{aligned}
& \text { if you know that } \\
& {[\vec{\omega}]_{\gamma}=\langle-1,2,-3\rangle \text {, what is } \vec{\omega} \text { ? }}
\end{aligned}
$$

We have that

$$
\begin{aligned}
& \text { We have that } \\
& \begin{aligned}
\vec{w} & =-1 \cdot(1)+2(1+x)-3 \cdot\left(1+x+x^{2}\right) \\
& =-2-x-3 x^{2}
\end{aligned}
\end{aligned}
$$

Ex: Let

$$
V=M_{2,2}=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{R}\right\}
$$

$$
F=\mathbb{R} .
$$

Claim: $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ is a basis for $M_{2,2}$ and thus $\operatorname{dim}\left(M_{2,2}\right)=4$. [This is called the standard basis for $M_{2,2}$]
proof of claim:
(1) First we will show they span $M_{2,2}$. Given $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ from $M_{2,2}$ we have

Thus, $\binom{10}{0},\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ span $M_{2,2}$.

$$
\begin{aligned}
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
c & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & d
\end{array}\right) \\
& =a\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+b\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+c\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+d\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

(2) Let's now check linear independence. Consider

$$
\begin{aligned}
& \text { Consider } \\
& C_{1}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+C_{2}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+C_{3}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+C_{4}\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\underbrace{\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)}_{\overrightarrow{0}}
\end{aligned}
$$

This becomes

$$
\left.\begin{array}{l}
\text { This becomes } \\
\left(\begin{array}{ll}
c_{1} & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & c_{2} \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
c_{3} & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & c_{4}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
0
\end{array} 0\right.
\end{array}\right)
$$

which becomes

$$
\begin{aligned}
& \text { hich becomes } \\
& \left(\begin{array}{ll}
c_{1} & c_{2} \\
c_{3} & c_{4}
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

Thus, $c_{1}=0, c_{2}=0, c_{3}=0, c_{4}=0$.
Since we only got one solution the vectors $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ are linearly independent.
By (1) and (2), $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ form a basis for $M_{2,2}$. and $\operatorname{dim}\left(M_{2,2}\right)$ $=4 \pi$

How 7 -Part 1 \#10(a)
Show that

$$
\begin{aligned}
& \text { how that } \\
& \left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \\
& M_{2,2}
\end{aligned}
$$

is a basis for $M_{2,2}$
We already know $\operatorname{dim}\left(M_{2,2}\right)=4$ from our previous example.
And we have 4 vectors above. So if we show that they are linearly independent then by a theorem from class they will also span $M_{2,2}$ and thus be a basis for $M_{2,2}$.

Consider

$$
\begin{aligned}
& \text { Consider } \\
& c_{1}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+c_{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)+c_{3}\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)+c_{4}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=\underbrace{\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)}_{\overrightarrow{0}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { This becomes } \\
& \left(\begin{array}{cc}
c_{1} & 0 \\
0 & c_{1}
\end{array}\right)+\left(\begin{array}{ll}
c_{2} & c_{2} \\
c_{2} & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & 0 \\
0 & c_{3}
\end{array}\right)+\left(\begin{array}{cc}
0 & -c_{4} \\
c_{4} & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

which gives

$$
\begin{aligned}
& \text { which gives } \\
& \left(\begin{array}{ll}
c_{1}+c_{2} & c_{2}-c_{4} \\
c_{2}+c_{4} & c_{1}+c_{3}
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

This gives

$$
\begin{aligned}
c_{1}+c_{2} & =0 \\
c_{2}-c_{4} & =0 \\
c_{2}+c_{4} & =0 \\
c_{1}+c_{3} & =0
\end{aligned}
$$

We have

$$
\left.\begin{array}{l}
\left(\begin{array}{cccc|c}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 \\
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0
\end{array}\right) \\
\xrightarrow{-R_{1}+R_{4} \rightarrow R_{4}}\left(\begin{array}{ccc|c}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 \\
0 & 1 & 0 & 1
\end{array}\right) \\
0 \\
\hline
\end{array}\right)
$$

Thus we get

$$
\begin{align*}
c_{1}+c_{2} & =0 \tag{1}\\
c_{2}-c_{4} & =0 \tag{2}\\
c_{3}-c_{4} & =0 \tag{3}\\
c_{4} & =0 \tag{4}
\end{align*}
$$

(4) gives $c_{4}=0$.
(3) gives $c_{3}=c_{4}=0$
(2) gives

$$
c_{2}=c_{4}=0
$$

(1) gives

$$
\begin{aligned}
& c_{2}=c_{4}=-0 \\
& c_{1}=-c_{2}=-0=0
\end{aligned}
$$

Thus the only solution to

$$
\begin{aligned}
& \text { Thus the only solution } \\
& c_{1}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+c_{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)+c_{3}\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)+c_{4}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \\
&
\end{aligned}
$$

is $c_{1}=c_{2}=c_{3}=c_{4}=0$.
Thus, $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ are linearly independent and hence are a basis for $M_{2,2}$ as discussed earlier.

Ex: Let

$$
\begin{aligned}
& V=M_{2,2} \\
& F=\mathbb{R}
\end{aligned}
$$

set of 2×2

Previously we showed that

$$
\begin{aligned}
& \text { Previously we showed that } \\
& \beta_{1}=\left[\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right] \\
& \beta_{2}=\left[\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & -1 \\
1 & 0
\end{array}\right)\right]
\end{aligned}
$$

are both ordered bases for $M_{2,2}$.
Let's calculate coordinates with respect to these bases.
Consider the matrix $\left(\begin{array}{ll}3 & 4 \\ 0 & 1\end{array}\right)$

Let's find $\left[\left(\begin{array}{ll}3 & 4 \\ 0 & 1\end{array}\right)\right]_{\beta_{1}}$.

$$
\left.\left.\left.\left.\begin{array}{l}
\text { We have } \\
\left.\begin{array}{ll}
3 & 4 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
3 & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 4 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
=\underset{\uparrow}{3}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+4\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+0\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+1\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
\text { Thus, }
\end{array}\right] \begin{array}{ll}
3 & 4 \\
0 & 1
\end{array}\right)\right]_{\beta_{1}}=\langle 3,4,0,1\rangle\right) .
$$

Now let's find $\left[\left(\begin{array}{ll}3 & 4 \\ 0 & 1\end{array}\right)\right]_{\beta_{2}}$.
We need to solve

$$
\begin{aligned}
& \text { We need to solve } \\
& \left(\begin{array}{ll}
3 & 4 \\
0 & 1
\end{array}\right)=a\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+b\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)+c\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)+d\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { This becomes } \\
& \left(\begin{array}{ll}
3 & 4 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right)+\left(\begin{array}{ll}
b & b \\
b & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & c
\end{array}\right)+\left(\begin{array}{cc}
0 & -d \\
d & 0
\end{array}\right)
\end{aligned}
$$

This becomes
which becomes

$$
\begin{aligned}
& \text { which becomes } \\
& \left(\begin{array}{ll}
3 & 4 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
a+b & b-d \\
b+d & a+c
\end{array}\right)
\end{aligned}
$$

which becomes

$$
\begin{aligned}
a+b & =3 \\
b-d & =4 \\
b+d & =0 \\
a+c & =1
\end{aligned}
$$

Let's solve!

$$
\begin{aligned}
& \left(\begin{array}{cccc|c}
1 & 1 & 0 & 0 & 3 \\
0 & 1 & 0 & -1 & 4 \\
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1
\end{array}\right) \\
& \xrightarrow{-R_{1}+R_{y} \rightarrow R_{y}}\left(\begin{array}{cccc|c}
1 & 1 & 0 & 0 & 3 \\
0 & 1 & 0 & -1 & 4 \\
0 & 1 & 0 & 1 & 0 \\
0 & -1 & 1 & 0 & -2
\end{array}\right) \\
& \xrightarrow[R_{2}+R_{4} \rightarrow R_{4}]{-R_{2}+R_{3} \rightarrow R_{3}}\left(\begin{array}{cccc|c}
1 & 1 & 0 & 0 & 3 \\
0 & 1 & 0 & -1 & 4 \\
0 & 0 & 0 & 2 & -4 \\
0 & 0 & 1 & -1 & 2
\end{array}\right) \\
& \xrightarrow{R_{3} \leftrightarrow R_{4}}\left(\begin{array}{cccc|c}
1 & 1 & 0 & 0 & 3 \\
0 & 1 & 0 & -1 & 4 \\
0 & 0 & 1 & -1 & 2 \\
0 & 0 & 0 & 2 & -4
\end{array}\right) \\
& \xrightarrow{\frac{1}{2} R_{4} \rightarrow R_{4}}\left(\begin{array}{cccc|c}
1 & 1 & 0 & 0 & 3 \\
0 & 1 & 0 & -1 & 4 \\
0 & 0 & 1 & -1 & 2 \\
0 & 0 & 0 & 1 & -2
\end{array}\right)
\end{aligned}
$$

This becomes

$$
\begin{aligned}
a+b & =3 \\
b-d & =4 \\
c-d & =2 \\
d & =-2
\end{aligned}
$$

Thus, $d=-2$

$$
\begin{aligned}
& c=2+d=0 \\
& b=4+d=4-2=2 \\
& a=3-b=3-2=1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Therefore, } \\
& \left(\begin{array}{ll}
3 & 4 \\
0 & 1
\end{array}\right)=1 \cdot\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+2 \cdot\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)+0 \cdot\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)-2 \cdot\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

Therefore,

Thus,

$$
\left[\left(\begin{array}{ll}
3 & 4 \\
0 & 1
\end{array}\right)\right]_{\beta_{2}}=\langle 1,2,0,-2\rangle
$$

HF 7 -Part 2
(1) (b) In HW 6 we showed that if $V=\mathbb{R}^{3}$ and $F=\mathbb{R}$ and $W=\{\langle a, b, c\rangle \mid b=a+c$ and $a, b, c \in \mathbb{R}\}$ then W is a subspace of $V=\mathbb{R}^{3}$. We will now find the dimension of W and a basis for W.

$$
V=\mathbb{R}^{3}
$$

$$
\begin{gathered}
.\langle 0,0,0\rangle \\
\cdot\langle 1,2,1\rangle \\
\vdots
\end{gathered}
$$

$$
\langle 1,4,1\rangle
$$

Let's find a basis for W.
Suppose $\langle a, b, c\rangle$ is in W.
Then, $b=a+c$.

$$
\begin{aligned}
& \text { So, } \\
&\langle a, b, c\rangle=\langle a, a+c, c\rangle \\
&=\langle a, a, 0\rangle+\langle 0, c, c\rangle \\
&=a\langle 1,1,0\rangle+c\langle 0,1,1\rangle
\end{aligned}
$$

So,

Note that $\langle 1,1,0\rangle$ and $\langle 0,1,1\rangle$ are in W.
From the above we see that W is spanned by $\langle 1,1,0\rangle$ and $\langle 0,1,1\rangle$.

Now let's show

$$
\langle 1,1,0\rangle,\langle 0,1,1\rangle
$$

are linearly independent.
Consider

$$
\begin{aligned}
& \text { Consider } \\
& c_{1}\langle 1,1,0\rangle+c_{2}\langle 0,1,1\rangle=\underbrace{\langle 0,0,0\rangle}_{\overrightarrow{0}}
\end{aligned}
$$

This becomes

$$
\begin{aligned}
& \text { his becomes } \\
& \left\langle c_{1}, c_{1}, 0\right\rangle+\left\langle 0, c_{2}, c_{2}\right\rangle=\langle 0,0,0\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \text { which gives } \\
& \left.\qquad c_{1}, c_{1}+c_{2}, c_{2}\right\rangle=\langle 0,0,0\rangle \text {. } \\
& \text { This gives } \begin{aligned}
c_{1} & =0 \\
c_{1}+c_{2} & =0 \\
c_{2} & =0
\end{aligned}
\end{aligned}
$$

The only solution is $c_{1}=c_{2}=0$.
This means $\langle 1,1,0\rangle,\langle 0,1,1\rangle$ we linearly independent.

Thus, $\langle 1,1,0\rangle,\langle 0,1,1\rangle$
form a basis for W.
Therefore, the dimension of W is 2 [elements in basis].
$V=\mathbb{R}^{3} \curvearrowleft$ dimension 3
$W \longleftarrow$ dimension 2

In general we have:
means: has a basis
Theorem: of finite size
Let V be a finite-dimensional vector space over a field F. Let W be a subspace of V. Then:
(1) W is finite-dimensional
(2) $\operatorname{dim}(W) \leq \operatorname{dim}(V)$
(3) If $\operatorname{dim}(W)=\operatorname{dim}(V)$, then $W=V$.
(4) If $W=V$, then

$$
\operatorname{dim}(w)=\operatorname{dim}(v)
$$

